Author:
Pogson Jacob M.,Shemesh Ari,Roberts Dale C.,Zee David S.,Otero-Milan Jorge,Ward Bryan K.
Abstract
IntroductionPatients and technologists commonly describe vertigo, dizziness, and imbalance near high-field magnets, e.g., 7-Tesla (T) magnetic resonance imaging (MRI) scanners. We sought a simple way to alleviate vertigo and dizziness in high-field MRI scanners by applying the understanding of the mechanisms behind magnetic vestibular stimulation and the innate characteristics of vestibular adaptation.MethodsWe first created a three-dimensional (3D) control systems model of the direct and indirect vestibulo-ocular reflex (VOR) pathways, including adaptation mechanisms. The goal was to develop a paradigm for human participants undergoing a 7T MRI scan to optimize the speed and acceleration of entry into and exit from the MRI bore to minimize unwanted vertigo. We then applied this paradigm from the model by recording 3D binocular eye movements (horizontal, vertical, and torsion) and the subjective experience of eight normal individuals within a 7T MRI. The independent variables were the duration of entry into and exit from the MRI bore, the time inside the MRI bore, and the magnetic field strength; the dependent variables were nystagmus slow-phase eye velocity (SPV) and the sensation of vertigo.ResultsIn the model, when the participant was exposed to a linearly increasing magnetic field strength, the per-peak (after entry into the MRI bore) and post-peak (after exiting the MRI bore) responses of nystagmus SPV were reduced with increasing duration of entry and exit, respectively. There was a greater effect on the per-peak response. The entry/exit duration and peak response were inversely related, and the nystagmus was decreased the most with the 5-min duration paradigm (the longest duration modeled). The experimental nystagmus pattern of the eight normal participants matched the model, with increasing entry duration having the strongest effect on the per-peak response of nystagmus SPV. Similarly, all participants described less vertigo with the longer duration entries.ConclusionIncreasing the duration of entry into and exit out of a 7T MRI scanner reduced or eliminated vertigo symptoms and reduced nystagmus peak SPV. Model simulations suggest that central processes of vestibular adaptation account for these effects. Therefore, 2-min entry and 20-s exit durations are a practical solution to mitigate vertigo and other discomforting symptoms associated with undergoing 7T MRI scans. In principle, these findings also apply to different magnet strengths.
Funder
National Institute on Deafness and Other Communication Disorders
Subject
Neurology (clinical),Neurology
Reference38 articles.
1. Subjective acceptance of 7 Tesla MRI for human imaging;Theysohn;Magn Reson Mater Phys Biol Med.,2008
2. Symptoms experienced by MR technologists exposed to static magnetic fields9
WalkerM
FultzA
DaviesC
BrockoppD
32102859Radiol Technol.912020
3. Exposure to MRI-related magnetic fields and vertigo in MRI workers;Schaap;Occup Environ Med.,2016
4. Vestibular effects of a 7 tesla mri examination compared to 1.5 t and 0 t in healthy volunteers;Theysohn;PLoS ONE.,2014
5. Dizziness and Vertigo during MRI;Ward;N Engl J Med.,2016
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献