Exercise Intervention Promotes the Growth of Synapses and Regulates Neuroplasticity in Rats With Ischemic Stroke Through Exosomes

Author:

Li Chen,Ke Changkai,Su Yue,Wan Chunxiao

Abstract

Background: Stroke is the leading cause of death and disability. Exercise produces neuroprotection by improving neuroplasticity. Exercise can induce exosome production. According to several studies, exosomes are involved in repairing brain function, but the relationship and mechanism of exercise, exosomes, and neuroprotection have not been elucidated. This study intends to explore the relationship and potential mechanism by observing the changes in the exosome level, infarct volume, neurological function and behavioral scores, synapses, and corticospinal tract (CST).Methods: Rats were randomly divided into four groups: a sham operation (SHAM) group, middle cerebral artery occlusion (MCAO) with sedentary intervention (SED-MCAO) group, MCAO with exercise intervention (EX-MCAO) group, and MCAO with exercise intervention and exosome injection (EX-MCAO-EXO) group. The exercise intervention was started 1 day after MCAO and lasted for 4 weeks. All rats were assessed using the modified neurological severity score (mNSS). The levels of exosomes in serum and brain, gait analysis, and magnetic resonance scan were performed 1 and 4 weeks after the intervention. After 4 weeks of intervention, the number of synapses, synaptophysin (Syn), and postsynaptic density protein 95(PSD-95) expression was detected.Results: After 4 weeks of intervention, (1) the EX-MCAO and EX-MCAO-EXO groups showed higher serum exosome (pEX−MCAO = 0.000, pEX−MCAO−EXO = 0.000) and brain exosome (pEX−MCAO = 0.001, pEX−MCAO−EXO = 0.000) levels than the SED-MCAO group, of which the EX-MCAO group had the highest serum exosome (p = 0.000) and the EX-MCAO-EXO group had the highest brain exosome (p = 0.03) levels. (2) The number of synapses in the EX-MCAO (p = 0.032) and EX-MCAO-EXO groups (p = 0.000) was significantly higher than that in the SED-MCAO group. The EX-MCAO-EXO group exhibited a greater number of synapses than the EX-MCAO (p = 0.000) group. (3) The synaptic plasticity-associated proteins were expressed significantly higher in the EX-MCAO (pSyn = 0.010, pPSD−95 = 0.044) and EX-MCAO-EXO (pSyn = 0.000, pPSD−95 = 0.000) groups than in the SED-MCAO group, and the EX-MCAO-EXO group (pSyn = 0.000, pPSD−95 = 0.046) had the highest expression. (4) Compared with the SED-MCAO group, the EX-MCAO group had significantly improved infarct volume ratio (p = 0.000), rFA value (p = 0.000), and rADC (p = 0.000). Compared with the EX-MCAO group, the EX-MCAO-EXO group had a significantly improved infarct volume ratio (p = 0.000), rFA value (p = 0.000), and rADC value (p = 0.001). (5) Compared with the SED-MCAO group, the EX-MCAO group (p = 0.001) and EX-MCAO-EXO group (p = 0.000) had significantly lower mNSS scores and improved gait. (6) The brain exosome levels were negatively correlated with the mNSS score, infarct volume ratio, and rADC value and positively correlated with the rFA value, Syn, and PSD-95 expression. The serum and brain exosome levels showed a positive correlation.Conclusions: Exercise intervention increases the serum exosome level in MCAO rats, which are recruited into the brain, leading to improved synaptic growth and CST integrity, a reduced infarct volume, and improved neurological function and gait.

Publisher

Frontiers Media SA

Subject

Neurology (clinical),Neurology

Reference65 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3