Usefulness of phase gradients of otoacoustic emissions in auditory health screening: An exploration with swept tones

Author:

Wang Xin,Zhu Mingxing,He Yuchao,Liu Zhenzhen,Huang Xin,Pan Hongguang,Wang Mingjiang,Chen Shixiong,Tao Yuan,Li Guanglin

Abstract

Otoacoustic emissions (OAEs) are low-level sounds generated by the cochlea and widely used as a noninvasive tool to inspect cochlear impairments. However, only the amplitude information of OAE signals is used in current clinical tests, while the OAE phase containing important information about cochlear functions is commonly discarded, due to the insufficient frequency-resolution of existing OAE tests. In this study, swept tones with time-varying frequencies were used to measure stimulus frequency OAEs (SFOAEs) in human subjects, so that high-resolution phase spectra that are not available in existing OAE tests could be obtained and analyzed. The results showed that the phase of swept-tone SFOAEs demonstrated steep gradients as the frequency increased in human subjects with normal hearing. The steep phase gradients were sensitive to auditory functional abnormality caused by cochlear damage and stimulus artifacts introduced by system distortions. At low stimulus levels, the group delays derived from the phase gradients decreased from around 8.5 to 3 ms as the frequency increased from 1 to 10 kHz for subjects with normal hearing, and the pattern of group-delay versus frequency function showed significant difference for subjects with hearing loss. By using the swept-tone technology, the study suggests that the OAE phase gradients could provide highly sensitive information about the cochlear functions and therefore should be integrated into the conventional methods to improve the reliability of auditory health screening.

Funder

National Natural Science Foundation of China

Science and Technology Planning Project of Shenzhen Municipality

China Postdoctoral Science Foundation

Shenzhen Institutes of Advanced Technology Innovation Program for Excellent Young Researchers

Special Project for Research and Development in Key areas of Guangdong Province

Publisher

Frontiers Media SA

Subject

General Neuroscience

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3