Mechanisms and Applications of Neuromodulation Using Surface Acoustic Waves—A Mini-Review

Author:

Peng Danli,Tong Wei,Collins David J.,Ibbotson Michael R.,Prawer Steven,Stamp Melanie

Abstract

The study of neurons is fundamental for basic neuroscience research and treatment of neurological disorders. In recent years ultrasound has been increasingly recognized as a viable method to stimulate neurons. However, traditional ultrasound transducers are limited in the scope of their application by self-heating effects, limited frequency range and cavitation effects during neuromodulation. In contrast, surface acoustic wave (SAW) devices, which are producing wavemodes with increasing application in biomedical devices, generate less self-heating, are smaller and create less cavitation. SAW devices thus have the potential to address some of the drawbacks of traditional ultrasound transducers and could be implemented as miniaturized wearable or implantable devices. In this mini review, we discuss the potential mechanisms of SAW-based neuromodulation, including mechanical displacement, electromagnetic fields, thermal effects, and acoustic streaming. We also review the application of SAW actuation for neuronal stimulation, including growth and neuromodulation. Finally, we propose future directions for SAW-based neuromodulation.

Publisher

Frontiers Media SA

Subject

General Neuroscience

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3