Toward Robust Cognitive 3D Brain-Inspired Cross-Paradigm System

Author:

Ben Abdallah Abderazek,Dang Khanh N.

Abstract

Spiking Neuromorphic systems have been introduced as promising platforms for energy-efficient spiking neural network (SNNs) execution. SNNs incorporate neuronal and synaptic states in addition to the variant time scale into their computational model. Since each neuron in these networks is connected to many others, high bandwidth is required. Moreover, since the spike times are used to encode information in SNN, a precise communication latency is also needed, although SNN is tolerant to the spike delay variation in some limits when it is seen as a whole. The two-dimensional packet-switched network-on-chip was proposed as a solution to provide a scalable interconnect fabric in large-scale spike-based neural networks. The 3D-ICs have also attracted a lot of attention as a potential solution to resolve the interconnect bottleneck. Combining these two emerging technologies provides a new horizon for IC design to satisfy the high requirements of low power and small footprint in emerging AI applications. Moreover, although fault-tolerance is a natural feature of biological systems, integrating many computation and memory units into neuromorphic chips confronts the reliability issue, where a defective part can affect the overall system's performance. This paper presents the design and simulation of R-NASH-a reliable three-dimensional digital neuromorphic system geared explicitly toward the 3D-ICs biological brain's three-dimensional structure, where information in the network is represented by sparse patterns of spike timing and learning is based on the local spike-timing-dependent-plasticity rule. Our platform enables high integration density and small spike delay of spiking networks and features a scalable design. R-NASH is a design based on the Through-Silicon-Via technology, facilitating spiking neural network implementation on clustered neurons based on Network-on-Chip. We provide a memory interface with the host CPU, allowing for online training and inference of spiking neural networks. Moreover, R-NASH supports fault recovery with graceful performance degradation.

Publisher

Frontiers Media SA

Subject

General Neuroscience

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Novel Yield Improvement Approach for 3D Stacking Neuromorphic Architecture;2023 IEEE 16th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC);2023-12-18

2. Power-Aware Neuromorphic Architecture With Partial Voltage Scaling 3-D Stacking Synaptic Memory;IEEE Transactions on Very Large Scale Integration (VLSI) Systems;2023-12

3. Fault Recovery in Spiking Neural Networks Through Target and Selection of Faulty Neurons for 3D Spiking Neuromorphic Processors;2023 IEEE 6th International Conference on Knowledge Innovation and Invention (ICKII);2023-08-11

4. Thermal-Aware Task-Mapping Method for 3D-NoC-Based Neuromorphic Systems;2023 6th International Conference on Electronics Technology (ICET);2023-05-12

5. Fault-Tolerant Spiking Neural Network Mapping Algorithm and Architecture to 3D-NoC-Based Neuromorphic Systems;IEEE Access;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3