Can Optic Flow Further Stimulate Treadmill-Elicited Stepping in Newborns?

Author:

Barbu-Roth Marianne,Siekerman Kim,Anderson David I.,Donnelly Alan,Huet Viviane,Goffinet François,Teulier Caroline

Abstract

Typically developing 3-day-old newborns take significantly more forward steps on a moving treadmill belt than on a static belt. The current experiment examined whether projecting optic flows that specified forward motion onto the moving treadmill surface (black dots moving on the white treadmill surface) would further enhance forward stepping. Twenty newborns were supported on a moving treadmill without optic flow (No OF), with optic flow matching the treadmill’s direction and speed (Congruent), with optic flow in the same direction but at a faster speed (Faster), and in a control condition with an incoherent optic flow moving at the same speed as in the Congruent condition but in random directions (Random). The results revealed no significant differences in the number or coordination of forward treadmill steps taken in each condition. However, the Faster condition generated significantly fewer leg pumping movements than the Random control condition. When highly aroused, newborns made significantly fewer single steps and significantly more parallel steps and pumping movements. We speculate the null findings may be a function of the high friction material that covered the treadmill surface.

Publisher

Frontiers Media SA

Subject

General Psychology

Reference36 articles.

1. A developmental perspective on visual proprioception;Anderson;Theories of Infant Development,2004

2. Effects of support surface and optic flow on step-like movements in pre-crawling and crawling infants.;Anderson;Infant Behav. Dev.,2016

3. The effects of optic flow on tactilely-elicited neonatal stepping;Barbu-Roth;Proceedings of the Development of Responsiveness to Optic Flow Across the First Year of Life [Symposium],2016

4. Neonatal stepping in relation to terrestrial optic flow.;Barbu-Roth;Child Dev.,2009

5. Air stepping in response to optic flows that move toward and away from the neonate.;Barbu-Roth;Dev. Psychobiol.,2014

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3