Author:
Shi Yuyu,He Ziyi,Deng Yuzhen,Li Huayun
Abstract
IntroductionPanum’s limiting case is one of the typical configurations of monocular occlusion region. The matching rule of Panum’s limiting case is the key to understanding how monocular occlusion region produces stereopsis. There are currently two main views on the matching rule of Panum’s limiting case, namely double fusion and uniqueness constraint. This paper further discusses its matching mechanism on the basis of previous studies.MethodsIn this study, fold line Panum’s stimuli were used to study the matching rule of Panum’s limiting case. In Experiment 1, fixation position was adopted to present the stimulus in a short time to explore the matching rules in Panum’s limiting case. In Experiment 2, the effect of fixation position on Panum’s limiting case matching results was further investigated.ResultsThe results of Experiment 1 show that when stimuli are presented in a short period of time, the reported result that a single feature in one eye may be matched alternately with two features in the other eye. This matching rule is called “fast alternative matching” in this article. The results of Experiment 2 results show that the position of the fixation could affect the matching result of participants.ConclusionIn conclusion, the matching rule of Panum’s limiting case is fast alternative matching, and the matching result is related to the attention state of the participant. These results not only provide a new perspective for matching rules in Panum’s limiting case, but also show that depth perception results in stereopsis can be influenced by top-down cognitive processing. This study provides a theoretical basis for studying the formation of stereopsis in the monocular region to a certain extent. In summary, the matching rule of Panum’s limiting case is fast alternative matching. In previous studies, the perceived result of double fusion may be caused by fast alternative matching. Also, the matching results are related to the participant’s state of attention, which suggests that the depth perception results of stereopsis are influenced by top-down cognitive processing.