Computational modeling of decision-making in substance abusers: testing Bechara’s hypotheses

Author:

Avila Chauvet Laurent,Mejía Cruz Diana

Abstract

One of the cognitive abilities most affected by substance abuse is decision-making. Behavioral tasks such as the Iowa Gambling Task (IGT) provide a means to measure the learning process involved in decision-making. To comprehend this process, three hypotheses have emerged: (1) participants prioritize gains over losses, (2) they exhibit insensitivity to losses, and (3) the capacity of operational storage or working memory comes into play. A dynamic model was developed to examine these hypotheses, simulating sensitivity to gains and losses. The Linear Operator model served as the learning rule, wherein net gains depend on the ratio of gains to losses, weighted by the sensitivity to both. The study further proposes a comparison between the performance of simulated agents and that of substance abusers (n = 20) and control adults (n = 20). The findings indicate that as the memory factor increases, along with high sensitivity to losses and low sensitivity to gains, agents prefer advantageous alternatives, particularly those with a lower frequency of punishments. Conversely, when sensitivity to gains increases and the memory factor decreases, agents prefer disadvantageous alternatives, especially those that result in larger losses. Human participants confirmed the agents’ performance, particularly when contrasting optimal and sub-optimal outcomes. In conclusion, we emphasize the importance of evaluating the parameters of the linear operator model across diverse clinical and community samples.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3