Reliable particle sizing in vaccine formulations using advanced dynamic light scattering

Author:

Bretz Coline,Jauslin Andrea,Leumann Dario,Koch Marius,Vaccaro Andrea

Abstract

Understanding the impact of lipid nanoparticle size on immunogenicity represents an important step for enabling the rapid development of novel vaccines against known or emergent diseases. Dynamic light scattering, also known as quasi-elastic light scattering or photon correlation spectroscopy, has established itself as an optimal analytical method to determine particle size due to its in-situ approach and fast measurements. However, its application to many systems of industrial relevance has been hindered due to artifacts arising from multiple scattering. Result interpretation becomes severely compromised depending on the concentration of the system and the size of the particles. In this context, strong sample dilution is often required, bringing additional uncertainties to the formulation development process. Here, we show how advanced dynamic light scattering technology can filter out multiple scattering from the signal and yield fully accurate sizing measurements regardless of the sample concentration. We illustrate this in a comparative study with standard dynamic light scattering using polystyrene beads as model suspension as well as a concentrated commercial lipid nanoparticle adjuvant (AddaVax™).

Publisher

Frontiers Media SA

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3