High Maintenance of Rhizosphere Soil C and N Equilibrium Regardless of Plant Species or Species Traits

Author:

Wakelin Steve A.,Matson A.,Wigley K.,Waller L.,Dickie I. A.,Whitehead David,Garrett L.

Abstract

Factors affecting the deposition of carbon and nitrogen into the rhizosphere soil have important implications for natural and managed ecosystems. These include the invasiveness of plants, extent to which ecosystems sequester soil carbon, through to regulation of N flow within and from agricultural ecosystems. This study determined if the close elemental ratios often measured in soils are evident within the highly active rhizosphere compartment, or rather potentially emerge to a conserved ratio (over time) from different initial rhizosphere states. Toward this, we assessed the rhizosphere C and N content (and C:N ratio) of 37 plant species; these were further grouped into the categories provenance (native or exotic to New Zealand), form (forb, grass, shrub, or tree), root-based nitrogen fixation symbiosis (+/– N-fixation), or mycorrhization type. Furthermore, the potential nitrification rate (PNR) among the plant rhizosphere soils was quantified to explore relationships between nitrate formation and the total C and C:N ratio. Mycorrhization status, provenance, and form had no significant influence on nutrient status nor PNR in rhizosphere soil samples (p > 0.05). However, total C and total N were significantly increased in the rhizosphere of N-fixing species (p < 0.02). These increased in proportion, with the C:N remaining constant for both groups (~12.24; p = 0.79). Rhizosphere PNR did not vary with categories of plants tested and had no correlation to rhizosphere total C, total N, nor C:N ratio (p > 0.3 for all). Overall, this study showed that conservation of nutrient ratios often measured in soils are present within the rhizosphere, where initial inputs of C and N enter the soil ecosystems. With the exception of N-fixing plant species, rhizosphere soils retain remarkably high conservation in C, N, C:P, and PNR among key groupings.

Funder

Ministry of Business, Innovation and Employment

Bio-Protection Research Centre

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3