Cadaver imprint on soil chemistry and microbes - Knowns, unknowns, and perspectives

Author:

Fiedler Sabine,Kaiser Klaus,Fournier Bertrand

Abstract

Cadaver-decomposition unleashes an ephemeral pulse of matter input that modifies microbial communities, as well as nutrient pools and fluxes. This leaves behind a measurable imprint on affected soils. However, the persistence of this imprint remains poorly understood. We define cadaver imprint persistence as the entire period between time of cadaver deposition and time when cadaver effects on microbial community structure and chemical indicators are no longer detectable. We present a brief overview of published results on the cadaver-induced changes in the bio-elements carbon, nitrogen and phosphorus, which regulate the structure and functions of the soil microbiome. Based on this, we identified conceptual and methodological gaps and biases and suggest potential research avenues to address them. This will help to better understand the relationships between cadaver-derived matter and microbial taxa and functions, as well as the role of cadaver-decomposition within and across ecosystems. The proposed future research on cadaver-derived imprint on soils has the potential to serve as a hub for connecting soil chemistry, microbial ecology, forensic sciences, and ecosystems science.

Publisher

Frontiers Media SA

Subject

General Medicine

Reference72 articles.

1. Introduction to carrion ecology, evolution, and their applications;Benbow,2018

2. Cadaver decomposition and soil: Processes;Carter,2008

3. Vertebrate decomposition is accelerated by soil microbes;Lauber;Appl Environ Microbiol,2014

4. Cadaver decomposition in terrestrial ecosystems;Carter;Naturwissenschaften,2007

5. Decomposition and dipteran succession in pig carrion in central Argentina: ecological aspects and their importance in forensic science;Horenstein;Med Vet Entomol,2010

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3