Spatiotemporal Variation Characteristics and Driving Factors of Nitrogen Use Efficiency of Wheat–Rice Rotation Systems in the Taihu Lake Region

Author:

Lu Xiaosong,Ma Lixia,Yu Dongsheng,Chen Yang,Wang Xin

Abstract

During the past three decades, a large amount of nitrogen (N) fertilizers has been applied in the rice and wheat rotation system in the Taihu Lake region of southern China to achieve high yield, resulting in low N use efficiency (NUE). China is implementing the national strategy “fertilizer reduction with efficiency increase” to solve the serious ecological problems caused by excessive fertilization. However, the effects of N fertilizer reduction on soil fertility and their integrated effect on NUE of rice–wheat rotation systems in the Taihu Lake region are not fully understood. In this study, test fields with different soil-fertility qualities were selected in typical rice–wheat areas in the Taihu Lake region to perform a 2-year rice–wheat N fertilizer effect test to obtain the comprehensive quantitative relationship among the integrated fertility index (IFI), nitrogen application level (NA), and NUE. Through the investigation and spatial analysis of NA and IFI in the study area in 2003 and 2017, the spatial and temporal variation characteristics of NA and IFI in the study area in the past 15-year period were obtained, and this information was spatially coupled with the comprehensive quantitative relationship model of NUE to reveal the variation characteristics and driving factors of NUE in the study area. The result shows that the wheat and rice NA in the study area in 2017 increased by 35.5 and 8.4%, respectively, compared with 2003. Due to excessive fertilization, the soil nitrogen, phosphorus, and potassium content of cultivated land in the study area in 2017 was greater than that in 2003, especially soil-available phosphorus and potassium contents, whereas soil organic matter (SOM) content was reduced. The cultivated land IFI of the study area as a whole increased by 7.2% in the 15-year period. The NUE of rice and wheat rotation increased by 5.8% in 2017 compared with that of 2003 due to the improvement in crop varieties and N fertilizer yield benefits. The increases of NA and IFI both have negative correlations with the NUE improvement, and the NA increase has a greater impact. In addition, the terrain, soil type, texture, and parent material also affect the soil nutrient-preserving capability and, thus, affect the spatial variation of IFI and NUE improvement. These factors have greater influence on NUE improvement of wheat than rice. This study provides a novel and effective method for analyzing the spatial-temporal variation characteristics of NUE in the rice–wheat system and is conducive to guide precise fertilization and N fertilizer reduction based on the spatial analysis of NA with IFI and NUE.

Funder

National Key Research and Development Program of China

Foundation for Innovative Research Groups of the National Natural Science Foundation of China

Publisher

Frontiers Media SA

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3