Vitamin D inhibits bone loss in mice with thyrotoxicosis by activating the OPG/RANKL and Wnt/β-catenin signaling pathways

Author:

Xu Dan,Gao Hong-Jiao,Lu Chun-Yan,Tian Hao-Ming,Yu Xi-Jie

Abstract

ObjectiveVitamin D and thyroid hormones have crucial roles in bone metabolism. This study aims to explore the effects of vitamin D on bone metabolism in mice with thyrotoxicosis and its mechanisms.Methods12-week-old mice were randomly divided into 6 groups (6 mice/group), the control (CON) group, vitamin D (VD) group, low-dose LT4 (Low LT4) group, low-dose LT4+VD (Low LT4+VD) group, high-dose LT4 (High LT4) group, high-dose LT4+VD (High LT4+VD) group, LT4 was provided every day and vitamin D3 every other day for 12 weeks. Thyroid function, 25-hydroxy vitamin D, type I collagen carboxy-terminal peptide (CTX), and type I procollagen amino-terminal peptide were determined. In addition, microcomputed tomography, bone histology and histomorphometry, a three-point bending test, and the mRNA expression of osteoprotegerin (OPG), receptor activator of nuclear factor-κB ligand (RANKL) and β-catenin in bone were conducted.ResultsThe BMD of lumbar vertebrae and femur decreased and the bone microstructure was destroyed significantly in thyrotoxicosis mice. Addition of vitamin D improved the BMD and bone microstructure only in the low LT4+VD group. Mice with thyrotoxicosis had a significantly higher level of CTX (P<0.05), which was decreased by treatment with vitamin D (P<0.05). The eroded surface per bone surface (Er. S/BS) of the cancellous bone and elongated surface/endocortical perimeter (Er. S/E Pm) of the cortical bone significantly increased in the Low LT4 and High LT4 groups (P<0.05). Treatment with vitamin D significantly decreased the Er. S/BS and Er. S/E Pm. But, treatment with vitamin D did not significantly improve the toughness and rigidity of bones. The ratio of OPG to RANKL and mRNA expression of β-catenin in the Low LT4+VD group were higher than that in the Low LT4 group (P<0.05).ConclusionIn mice with thyrotoxicosis, treatment with vitamin D can inhibit bone resorption and improve the BMD and trabecular bone architecture by increasing the ratio of OPG to RANKL and upregulating the expression of Wnt/β-catenin.

Publisher

Frontiers Media SA

Subject

Endocrinology, Diabetes and Metabolism

Reference37 articles.

1. A systematic review on the definition of rhabdomyolysis;Stahl;J Neurol,2020

2. Subclinical thyroid dysfunction and fracture risk: a meta-analysis;Blum;Jama,2015

3. WNT signaling in bone development and homeostasis;Zhong;Wiley Interdiscip Rev Dev Biol,2014

4. Rank/Rankl/opg: literature review;Silva;Acta Reumatol Port,2011

5. Osteoclast-osteoblast communication;Matsuo;Arch Biochem Biophys,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3