Multiepitope Dendrimeric Antigen-Silica Particle Composites as Nano-Based Platforms for Specific Recognition of IgEs

Author:

Gil-Ocaña Violeta,Jimenez Isabel M.,Mayorga Cristobalina,Doña Inmaculada,Céspedes Jose Antonio,Montañez Maria I.,Vida Yolanda,Torres Maria J.,Perez-Inestrosa Ezequiel

Abstract

β-lactam antibiotics (BLs) are the drugs most frequently involved in drug hypersensitivity reactions. However, current in vitro diagnostic tests have limited sensitivity, partly due to a poor understanding of in vivo drug–protein conjugates that both induce the reactions and are immunologically recognized. Dendrimeric Antigen-Silica particle composites (DeAn@SiO2), consisting on nanoparticles decorated with BL-DeAns are promising candidates for improving the in vitro clinical diagnostic practice. In this nano-inspired system biology, the synthetic dendrimer plays the role of the natural carrier protein, emulating its haptenation by drugs and amplifying the multivalence. Herein, we present the design and synthesis of new multivalent mono- and bi-epitope DeAn@SiO2, using amoxicillin and/or benzylpenicillin allergenic determinants as ligands. The homogeneous composition of nanoparticles provides high reproducibility and quality, which is critical for in vitro applications. The suitable functionalization of nanoparticles allows the anchoring of DeAn, minimizing the nonspecific interactions and facilitating the effective exposure to specific IgE; while the larger interaction area increments the likelihood of capturing specific IgE. This achievement is particularly important for improving sensitivity of current immunoassays since IgE levels in BL allergic patients are very low. Our data suggest that these new nano-based platforms provide a suitable tool for testing IgE recognition to more than one BL simultaneously. Immunochemical studies evidence that mono and bi-epitope DeAn@SiO2 composites could potentially allow the diagnosis of patients allergic to any of these drugs with a single test. These organic–inorganic hybrid materials represent the basis for the development of a single screening for BL-allergies.

Funder

Ministerio de Ciencia e Innovación

Instituto de Salud Carlos III

Consejería de Salud y Familias, Junta de Andalucía

Publisher

Frontiers Media SA

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3