De novo identification of complex traits associated with asthma

Author:

Zaied Roan E.,Fadason Tayaza,O’Sullivan Justin M.

Abstract

IntroductionAsthma is a heterogeneous inflammatory disease often associated with other complex phenotypes. Identifying asthma-associated diseases and uncovering the molecular mechanisms mediating their interaction can help detangle the heterogeneity of asthma. Network analysis is a powerful approach for untangling such inter-disease relationships.MethodsHere, we integrated information on physical contacts between common single nucleotide polymorphisms (SNPs) and gene expression with expression quantitative trait loci (eQTL) data from the lung and whole blood to construct two tissue-specific spatial gene regulatory networks (GRN). We then located the asthma GRN (level 0) within each tissue-specific GRN by identifying the genes that are functionally affected by asthma-associated spatial eQTLs. Curated protein interaction partners were subsequently identified up to four edges or levels away from the asthma GRN. The eQTLs spatially regulating genes on levels 0–4 were queried against the GWAS Catalog to identify the traits enriched (hypergeometric test; FDR ≤ 0.05) in each level.ResultsWe identified 80 and 82 traits significantly enriched in the lung and blood GRNs, respectively. All identified traits were previously reported to be comorbid or associated (positively or negatively) with asthma (e.g., depressive symptoms and lung cancer), except 8 traits whose association with asthma is yet to be confirmed (e.g., reticulocyte count). Our analysis additionally pinpoints the variants and genes that link asthma to the identified asthma-associated traits, a subset of which was replicated in a comorbidity analysis using health records of 26,781 asthma patients in New Zealand.DiscussionOur discovery approach identifies enriched traits in the regulatory space proximal to asthma, in the tissue of interest, without a priori selection of the interacting traits. The predictions it makes expand our understanding of possible shared molecular interactions and therapeutic targets for asthma, where no cure is currently available.

Publisher

Frontiers Media SA

Subject

Immunology,Immunology and Allergy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3