An Automated Aerosol Collection and Extraction System to Characterize Electronic Cigarette Aerosols

Author:

Son Yeongkwon,Khlystov Andrey

Abstract

Electronic cigarette (e-cigarette) market increased by 122% during 2014–2020 and is expected to continue growing rapidly. Despite their popularity, e-cigarettes are known to emit dangerous levels of toxic compounds (e.g., carbonyls), but a lack of accurate and efficient testing methods is hindering the characterization of e-cigarette aerosols emitted by a wide variety of e-cigarette devices, e-liquids, and use patterns. The aim of this study is to fill this gap by developing an automated E-cigarette Aerosol Collection and Extraction System (E-ACES) consisting of a vaping machine and a collection/extraction system. The puffing system was designed to mimic e-cigarette use patterns (i.e., power output and puff topography) by means of a variable power-supply and a flow control system. The sampling system collects e-cigarette aerosols using a combination of glass wool and a continuously wetted denuder. After the collection stage, the system is automatically washed with absorbing and extracting liquids (e.g., methanol, an acetaldehyde-DNPH solution). The entire system is controlled by a computer. E-ACES performance was evaluated against conventional methods during measurements of nicotine and carbonyl emissions from a tank type e-cigarette. Nicotine levels measured using glass fiber filters and E-ACES were not significantly different: 201.2 ± 6.2 and 212.5 ± 17 μg/puff (p = 0.377), respectively. Differences in formaldehyde and acetaldehyde levels between filter-DNPH cartridges and the E-ACES were 14% (p = 0.057) and 13% (p = 0.380), respectively. The E-ACES showed reproducible nicotine and carbonyl testing results for the selected e-cigarette vaping conditions.

Funder

National Institute of Environmental Health Sciences

Publisher

Frontiers Media SA

Subject

General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3