Structural and electronic properties of H2, CO, CH4, NO, and NH3 adsorbed onto Al12Si12 nanocages using density functional theory

Author:

Li Liu-Kun,Ma Yan-Qiu,Li Kang-Ning,Xie Wen-Li,Huang Bin

Abstract

In this study, the adsorption of gases (CH4, CO, H2, NH3, and NO) onto Al12Si12 nanocages was theoretically investigated using density functional theory. For each type of gas molecule, two different adsorption sites above the Al and Si atoms on the cluster surface were explored. We performed geometry optimization on both the pure nanocage and nanocages after gas adsorption and calculated their adsorption energies and electronic properties. The geometric structure of the complexes changed slightly following gas adsorption. We show that these adsorption processes were physical ones and observed that NO adsorbed onto Al12Si12 had the strongest adsorption stability. The Eg (energy band gap) value of the Al12Si12 nanocage was 1.38 eV, indicating that it possesses semiconductor properties. The Eg values of the complexes formed after gas adsorption were all lower than that of the pure nanocage, with the NH3–Si complex showing the greatest decrease in Eg. Additionally, the highest occupied molecular orbital and the lowest unoccupied molecular orbital were analyzed according to Mulliken charge transfer theory. Interaction with various gases was found to remarkably decrease the Eg of the pure nanocage. The electronic properties of the nanocage were strongly affected by interaction with various gases. The Eg value of the complexes decreased due to the electron transfer between the gas molecule and the nanocage. The density of states of the gas adsorption complexes were also analyzed, and the results showed that the Eg of the complexes decreased due to changes in the 3p orbital of the Si atom. This study theoretically devised novel multifunctional nanostructures through the adsorption of various gases onto pure nanocages, and the findings indicate the promise of these structures for use in electronic devices.

Publisher

Frontiers Media SA

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3