Synthesis, 3D-QSAR and Molecular Docking Study of Nopol-Based 1,2,4-Triazole-Thioether Compounds as Potential Antifungal Agents

Author:

Wang Xiu,Duan Wengui,Lin Guishan,Li Baoyu,Chen Ming,Lei Fuhou

Abstract

Cytochrome bc1 complex is an important component of cellular respiratory chain, and it is also an important target enzyme to inhibit the growth of plant pathogens. Using cytochrome bc1 complex as the target enzyme, twenty-three novel nopol-based 1,2,4-triazole-thioether compounds were designed and synthesized from natural preponderant resource β-pinene, and their structures were confirmed by FT-IR, NMR, ESI-MS and elemental analysis. The in vitro antifungal activity of the target compounds 5a-5w was preliminarily evaluated against eight plant pathogens at the concentration of 50 µg/ml. The bioassay results showed that the target compounds exhibited the best antifungal activity against Physalospora piricola, in which compounds 5b (R= o-CH3 Ph), 5e (R= o-OCH3 Ph), 5h (R= o-F Ph), 5m (R= o-Br Ph), 5o (R= m,m-OCH3 Ph), and 5r (R= p-OH Ph) had inhibition rates of 91.4, 83.3, 86.7, 83.8, 91.4 and 87.3%, respectively, much better than that of the positive control chlorothalonil. Also, compound 5a (R= Ph) had inhibition rate of 87.9% against Rhizoeotnia solani, and compound 5b (R= o-CH3 Ph) had inhibition rates of 87.6 and 89% against Bipolaris maydis and Colleterichum orbicala, respectively. In order to develop novel and promising antifungal compounds against P. piricola, the analysis of three-dimensional quantitative structure-activity relationship (3D-QSAR) was carried out using the CoMFA method on the basis of their antifungal activity data, and a reasonable and effective 3D-QSAR model (r2 = 0.944, q2 = 0.685) has been established. In addition, the theoretical study of molecular docking revealed that the target compounds could bind to and interact with the site of cytochrome bc1 complex.

Publisher

Frontiers Media SA

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3