Biomass-Based Silicon and Carbon for Lithium-Ion Battery Anodes

Author:

Muraleedharan Pillai Manoj,Kalidas Nathiya,Zhao Xiuyun,Lehto Vesa-Pekka

Abstract

Lithium-ion batteries (LIBs) are the most preferred energy storage devices today for many high-performance applications. Recently, concerns about global warming and climate change have increased the need and requirements for LIBs used in electric vehicles, and thus more advanced technologies and materials are urgently needed. Among the anode materials under development, silicon (Si) has been considered the most promising anode candidate for the next generation LIBs to replace the widely used graphite. Si cannot be used as such as the electrode of LIB, and thus, carbon is commonly used to realize the applicability of Si in LIBs. Typically, this means forming a-Si/carbon composite (Si/C). One of the main challenges in the industrial development of high-performance LIBs is to exploit low-cost, environmentally benign, sustainable, and renewable chemicals and materials. In this regard, bio-based Si and carbon are favorable to address the challenge assuming that the performance of the LIB anode is not compromised. The present review paper focuses on the development of Si and carbon anodes derived from various types of biogenic sources, particularly from plant-derived biomass resources. An overview of the biomass precursors, process/extraction methods for producing Si and carbon, the critical physicochemical properties influencing the lithium storage in LIBs, and how they affect the electrochemical performance are highlighted. The review paper also discusses the current research challenges and prospects of biomass-derived materials in developing advanced battery materials.

Funder

Academy of Finland

Publisher

Frontiers Media SA

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3