Inorganic Nanozymes: Prospects for Disease Treatments and Detection Applications

Author:

Wang Peng,Min Dongyu,Chen Guoyou,Li Minghui,Tong Liquan,Cao Yonggang

Abstract

In recent years, with the development of nanomaterials, a slice of nanomaterials has been demonstrated to possess high catalytic activity similar to natural enzymes and counter the dilemmas including easy inactivation and low yield natural of enzymes, which are labeled as nanozymes. The catalytic activity of nanozymes could be easily regulated by size, structure, surface modification and other factors. In comparison with natural enzymes, nanozymes featured with a more stable structure, economical preparation and preservation, diversity of functions and adjustable catalytic activity, thus becoming the potentially ideal substitute for natural enzymes. Generally, the are mainly three types containing metal oxide nanozymes, noble metal nanozymes and carbon-based nanozymes, owing various applications in biomedical, energy and environmental fields. In this review, to summarize the recent representative applications of nanozymes, and potentially explore the scientific problems in this field at the same time, we are going to discuss the catalytic mechanisms of diverse nanozymes, with the emphasis on their applications in the fields of tumor therapy, anti-inflammatory and biosensing, hoping to help and guide the future development of nanozymes.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3