Author:
Alenezi Ghadeer Thani,Rajendran Narendran,Abdel Nazeer Ahmed,Makhseed Saad
Abstract
Advances in new porous materials have recognized great consideration in CO2 capture and electrochemical energy storage (EES) applications. In this study, we reported a synthesis of two nitrogen-enriched KOH-activated porous carbons prepared from polycarbazole phthalonitrile networks through direct pyrolysis protocol. The highest specific surface area of the carbon material prepared by pyrolysis of p-4CzPN polymer reaches 1,279 m2 g−1. Due to the highly rigid and reticular structure of the precursor, the obtained c-4CzPN–KOH carbon material exhibits high surface area, uniform porosity, and shows excellent CO2 capture performance of 19.5 wt% at 0°C. Moreover, the attained porous carbon c-4CzPN–KOH showed high energy storage capacities of up to 451 F g−1 in aqueous electrolytes containing 6.0 M KOH at a current density of 1 A g-1. The prepared carbon material also exhibits excellent charge/discharge cycle stability and retains 95.9% capacity after 2000 cycles, indicating promising electrode materials for supercapacitors.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献