In a pursuit of optimal glycan fluorescent label for negative MS mode for high-throughput N-glycan analysis

Author:

Šoić Dinko,Mlinarić Zvonimir,Lauc Gordan,Gornik Olga,Novokmet Mislav,Keser Toma

Abstract

Over the past few decades, essential role of glycosylation in protein functioning has become widely recognized, rapidly advancing glycan analysis techniques. Because free glycan’s lack chromophore or fluorophore properties, and do not ionize well, they are often derivatized to facilitate their separation or detection, and to enhance the sensitivity of the analysis. Released glycan’s are usually derivatized using a fluorescent tag, which enables their optical detection in LC profiling. Some fluorescent labels can also promote ionization efficiency, thus facilitating MS detection. For this reason, there is a need to design fluorophores that will contribute more to the fluorescence and ionization of glycan’s and the need to quantify these contributions to improve glycan analysis methods. In this paper we focused on negative MS mode as these methods are more informative than methods involving positive MS mode, allowing for a less ambiguous elucidation of detailed glycan structures. Additionally, traditional glycan labels in negative mode MS usually result with diminished sensitivity compared to positive mode, thus making selection of appropriate label even more important for successful high-throughput analysis. Therefore, eleven fluorescent labels of different chemo-physical properties were chosen to study the influence of label hydrophobicity and presence of a negative charge on glycan ionization in negative MS mode. N-glycans released from IgG sample were labeled with one of the eleven labels, purified with HILIC-SPE and analyzed with HILIC-UPLC-FLR-MS. To make evaluation of studied labels performance more objective, analysis was performed in two laboratories and at two mobile phase pH (4.4 and 7.4). Although there was a notable trend of more hydrophobic labels having bigger signal intensities in one laboratory, we observed no such trend in the other laboratory. The results show that MS parameters and intrinsic configuration of the spectrometer have even bigger effect on the final ESI response of the labeled-glycan ionization in negative MS mode that the labels themselves. With this in mind, further research and development of fluorophores that will be suitable for high-throughput glycan analysis in the negative MS mode are proposed.

Publisher

Frontiers Media SA

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3