Study on failure mechanism on rechargeable alkaline zinc–Air battery during charge/discharge cycles at different depths of discharge

Author:

Zhang Donghao,Hu Wenbin

Abstract

Background: Zinc-air battery (ZAB) is a promising candidate for energy storage, but the short cycle life severely restricts the wider practical applications. Up to date, no consensus on the dominant factors affecting ZABs cycle life was reached to help understanding how to prolong the ZAB’s cycle life. Here, a series of replacement experiments based on the ZAB were conducted to confirm the pivotal factors that influence the cycle life at different depths of discharge (DOD).Method: The morphology and composition of the components of the battery were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and chemical titration analyses.Result: SEM images and XRD results revealed that the failure of the zinc anode gradually deepens with the increase of DOD, while the performance degradation of the tricobalt tetroxide/Carbon Black (Co3O4/CB) air cathode depends on the operating time. The concentration of CO32− depends on the charge/discharge cycle time. The replacement experiments results show that the dominant factors affecting the ZAB’s cycle life is the reduction of active sites on the surface of Co3O4/CB air cathode at a shallow DOD, while that is the carbonation of the electrolyte at a deep DOD. The reduction of active sites on the surface of Co3O4/CB air cathode is caused by the coverage of K2CO3 precipitated by carbonation of the electrolyte, suggesting that the carbonation of the alkaline electrolyte limits ZAB’s cycle life.Conclusion: Therefore, this work not only further discloses the failure mechanism of ZAB, but also provides some feasible guidance to design a ZAB with along cycle life.

Publisher

Frontiers Media SA

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3