Effects of Li+ conduction on the capacity utilization of cathodes in all-solid-state lithium batteries

Author:

Wang Zhiping,Song Shipai,Jiang Chunzhi,Wu Yongmin,Xiang Yong,Zhang Xiaokun

Abstract

Li+ conduction in all-solid-state lithium batteries is limited compared with that in lithium-ion batteries based on liquid electrolytes because of the lack of an infiltrative network for Li+ transportation. Especially for the cathode, the practically available capacity is constrained due to the limited Li+ diffusivity. In this study, all-solid-state thin-film lithium batteries based on LiCoO2 thin films with varying thicknesses were fabricated and tested. To guide the cathode material development and cell design of all-solid-state lithium batteries, a one-dimensional model was utilized to explore the characteristic size for a cathode with varying Li+ diffusivity that would not constrain the available capacity. The results indicated that the available capacity of cathode materials was only 65.6% of the expected value when the area capacity was as high as 1.2 mAh/cm2. The uneven Li distribution in cathode thin films owing to the restricted Li+ diffusivity was revealed. The characteristic size for a cathode with varying Li+ diffusivity that would not constrain the available capacity was explored to guide the cathode material development and cell design of all-solid-state lithium batteries.

Publisher

Frontiers Media SA

Subject

General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3