Author:
Echeverrigaray Fernando G.,Alvarez Fernando
Abstract
The urgent need to address the global sustainability issues that modern society is currently facing requires the development of micro and nanotechnologies, which rely largely on functional materials. Beyond studies focused solely on low-dimensional materials, broader research related to multifunctionality has shown that the major efforts to meet these criteria for new electronic, photonic, and optoelectronic concepts, particularly to achieve high-performance devices, are still challenging. By exploiting their unique properties, a comprehensive understanding of the implications of research for the synthesis and discovery of novel materials is obtained. The present article encompasses innovation research as an alternative optimization and design for sustainable energy development, bridging the scaling gap in atomically controlled growth in terms of surface heterogeneity and interfacial engineering. In addition, the corresponding research topics are widely regarded as a scientometric analysis and visualization for the evaluation of scientific contributions into the early 20 years of the 21st century. In this perspective, a brief overview of the global trends and current challenges toward high-throughput fabrication followed by a scenario-based future for hybrid integration and emerging structural standards of scalable control design and growth profiles are emphasized. Finally, these opportunities are unprecedented to overcome current limitations, creating numerous combinations and triggering new functionalities and unparalleled properties for disruptive innovations of Frontier technologies.
Funder
Fundação de Amparo à Pesquisa do Estado de São Paulo
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献