Searching guidelines for scalable and controllable design of multifunctional materials and hybrid interfaces: Status and perspective

Author:

Echeverrigaray Fernando G.,Alvarez Fernando

Abstract

The urgent need to address the global sustainability issues that modern society is currently facing requires the development of micro and nanotechnologies, which rely largely on functional materials. Beyond studies focused solely on low-dimensional materials, broader research related to multifunctionality has shown that the major efforts to meet these criteria for new electronic, photonic, and optoelectronic concepts, particularly to achieve high-performance devices, are still challenging. By exploiting their unique properties, a comprehensive understanding of the implications of research for the synthesis and discovery of novel materials is obtained. The present article encompasses innovation research as an alternative optimization and design for sustainable energy development, bridging the scaling gap in atomically controlled growth in terms of surface heterogeneity and interfacial engineering. In addition, the corresponding research topics are widely regarded as a scientometric analysis and visualization for the evaluation of scientific contributions into the early 20 years of the 21st century. In this perspective, a brief overview of the global trends and current challenges toward high-throughput fabrication followed by a scenario-based future for hybrid integration and emerging structural standards of scalable control design and growth profiles are emphasized. Finally, these opportunities are unprecedented to overcome current limitations, creating numerous combinations and triggering new functionalities and unparalleled properties for disruptive innovations of Frontier technologies.

Funder

Fundação de Amparo à Pesquisa do Estado de São Paulo

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

Frontiers Media SA

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3