A Comparative Environmental Life Cycle Assessment of the Combustion of Ammonia/Methane Fuels in a Tangential Swirl Burner

Author:

Razon Luis F.,Valera-Medina Agustin

Abstract

Ammonia has been proposed as a replacement for fossil fuels. Like hydrogen, emissions from the combustion of ammonia are carbon-free. Unlike hydrogen, ammonia is more energy dense, less explosive, and there exists extensive experience in its distribution. However, ammonia has a low flame speed and combustion emits nitrogen oxides. Ammonia is produced via the Haber-Bosch process which consumes large amounts of fossil fuels and requires high temperatures and pressures. A life cycle assessment to determine potential environmental advantages and disadvantages of using ammonia is necessary. In this work, emissions data from experiments with generating heat from tangential swirl burners using ammonia cofired with methane employing currently available technologies were utilized to estimate the environmental impacts that may be expected. Seven ammonia sources were combined with two methane sources to create 14 scenarios. The impacts from these 14 scenarios were compared to those expected from using pure methane. The results show that using ammonia from present-day commercial production methods will result in worse global warming potentials than using methane to generate the same amount of heat. Only two scenarios, methane from biogas combined with ammonia from hydrogen from electricity and nuclear power via electrolysis and subsequent ammonia synthesis using nitrogen from the air, showed reductions in global warming potential. Subsequent analysis of other environmental impacts for these two scenarios showed potentially lower impacts for respiratory organics, terrestrial acidification-nutrification and aquatic acidification depending on how the burner is operated. The other eight environmental impacts were worse than the methane scenario because of activities intrinsic to the generation of electricity via wind power and nuclear fission. The results show that generating heat from a tangential swirl burner using ammonia currently available technologies will not necessarily result in improved environmental benefits in all categories. Improvements in renewable energy technologies could change these results positively. Other means of producing ammonia and improved means of converting ammonia to energy must continue to be explored.

Funder

Commission on Higher Education

Publisher

Frontiers Media SA

Reference37 articles.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3