Leveraging mechanobiology and biophysical cues in lung organoids for studying lung development and disease

Author:

Shao Ziming,De Coppi Paolo,Michielin Federica

Abstract

Lung organoids have emerged as powerful tools for studying lung distal diseases by recapitulating the cellular diversity and microenvironment of the lung tissue. This review article highlights the advancements in leveraging mechanobiology and biophysical cues in lung organoid engineering to improve their physiological relevance and disease modelling capabilities. We discuss the role of mechanobiology in lung development and homeostasis, as well as the integration of biophysical cues in the design and culture of lung organoids. Furthermore, we explore how these advancements have contributed to the understanding of lung distal diseases pathogenesis. We also discuss the challenges and future directions in harnessing mechanobiology and biophysical cues in lung organoid research. This review showcases the potential of lung organoids as a platform to investigate the underappreciated impacts of biophysical and biomechanical properties in enhancing lung organoids complexity and functionality, and ultimately provide new insight into embryonic lung development and pulmonary distal diseases pathogenesis.

Publisher

Frontiers Media SA

Subject

Chemical Engineering (miscellaneous),Bioengineering,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3