In-field 3D printing of form-fitted generatively designed components—a case study on paralympic sit-ski equipment

Author:

Nesheim Ole S.,Eikevåg Sindre W.,Steinert Martin,Elverum Christer W.

Abstract

Creating specialized components featuring complex structures typically involves extensive time, CAD modelling and manual labor. However, with the right combination of tools and knowledge, complex components can be generated, manufactured, and utilized within hours, rather than weeks or months. By creating a portable manufacturing setup, the designer can produce components on site, significantly enhancing accessibility. An example where time and accessibility are of vital importance is in paralympic cross country skiing where training schedules are tight and snow conditions vary. The aim of this study was to generate and manufacture form-fitted, lightweight knee-supports for a Paralympic sit-ski athlete within 4 days. This was done by 3D printing components generated using Fusion 360s Generative Design (GD), based on inputs from the athlete’s geometry, material testing and force data resulting from the athlete’s weight and movement. A precise fit around the knees was achieved using a high-accuracy 3D scanner and modelling software to create an adjustable prototype to determine knee positions and key angles. Force data from the knees were gathered using a digital twin sit-ski. Based on the collected data, the maximum forces inserted into the GD model were 700N and 500N for the right and left knee, respectively. Material data was obtained through testing ABS samples manufactured under the same conditions as the knee-supports themselves. The Young’s modulus was calculated to EXY=1.945±0.061GPa and EXZ=2.123±0.108GPa and UTS was σXY=31.408±0.774MPa and σXZ=25.859±1.956MPa. The GD model generated seven models to choose from for each knee. The supports were manufactured using a 3D printer modified to increase the volumetric flow, effectively reducing manufacturing time. Manufacturing time of the final knee-supports were 6 h 33 min and 7 h 24 min and the total weight of the components including support structures were 468 g and 532 g for the right and left knee, respectively. Later optimized print settings reduced the manufacturing time to 4 h 40 min. In total, two iterations of knee-supports were produced, and the final lightweight versions were mounted onto the sit-ski within 4 days. Qualitative feedback from the athlete revealed improved fit, increased stability, surprisingly short manufacturing time and a generally pleasing result.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3