Welding robot automation technology based on digital twin

Author:

Kang Yuhui,Chen Rongshang

Abstract

In the era of intelligence and automation, robots play a significant role in the field of automated welding, enhancing efficiency and precision. However, challenges persist in scenarios demanding complexity and higher precision, such as low welding planning efficiency and inaccurate weld seam defect detection. Therefore, based on digital twin technology and kernel correlation filtering algorithm, a welding tracking model is proposed. Firstly, the kernel correlation filtering algorithm is used to train the filter on the first frame of the collected image, determine the position of image features in the region, extract histogram features of image blocks, and then train the filter using ridge regression to achieve welding trajectory tracking. Additionally, an intelligent weld seam detection model is introduced, employing a backbone feature network for feature extraction, feature fusion through a feature pyramid, and quality detection of weld seams through head classification. During testing of the tracking model, the maximum tracking error is −0.232 mm, with an average absolute tracking error of 0.08 mm, outperforming other models. Comparatively, in tracking accuracy, the proposed model exhibits the fastest convergence with a precision rate of 0.845, surpassing other models. In weld seam detection, the proposed model excels with a detection accuracy of 97.35% and minimal performance loss at 0.023. In weld seam quality and melt depth error detection, the proposed model achieves errors within the range of −0.06 mm, outperforming the other two models. These results highlight the outstanding detection capabilities of the proposed model. The research findings will serve as technical references for the development of automated welding robots and welding quality inspection.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3