Supporting the Sustainable Energy Transition in the Canary Islands: Simulation and Optimization of Multiple Energy System Layouts and Economic Scenarios

Author:

Barone Giovanni,Buonomano Annamaria,Forzano Cesare,Giuzio Giovanni Francesco,Palombo Adolfo

Abstract

The Canary Islands have great potential for the implementation of sustainable energy systems due to its availability of natural resources. The archipelago is not connected to the mainland electricity grid and the current generation system is mainly based on traditional fossil fuel. Therefore, the islands strongly dependent on fuel importations, with high costs due to logistics. Furthermore, due to the inadequate coverage of residential heating and cooling needs, the per capita energy consumption is far below the Spanish national average. This occurrence has inspired an intense debate on the current development model of the Canary Archipelago, which has led to the implementation of actions and measures aimed at achieving greater energy sustainability in the archipelago. Furthermore, at a local scale, an important investment plan has been carried out by the Spanish grid operator to ensure energy supply, to improve the system security and reliability, and to optimize the integration of renewable energies. Future measures and investments will be crucial to ensure a sustainable growth, both from the economic and the environment point of views. In this framework, this paper aims to discuss and compare the energy solutions, based on renewable energy technologies, identified to boost the sustainable transition of the islands. To this aim, multiple configurations of a wind power plant coupled with reversible hydro power/storage system for the distributed and on-site energy production in the island of Gran Canaria were modeled, simulated, and optimized by a TRNSYS/Matlab algorithm suitably developed. Specifically, along with the proposed system layouts, different scenarios related to diverse annual costs growth rate of fuel were investigated. The proposed analysis covers a time horizon of 20 years, up to 2040, and aims at assessing the impact of the investigated solution on energy demand, energy supply, and population incomes. Depending on the considered fuel cost growth rate, the best system configurations allow a primary energy saving in the range of 58.1–68.1%. Based on the system choice, the enterprise will generate significant revenues to the island population. The net present values are estimated in the range 1.50 × 103 ÷ 1.84 × 103 and 0.85 × 103 ÷ 1.27 × 103 M€, respectively for the two considered scenarios (annual costs growth rate of fuel 2 and −2%). The analysis demonstrates the importance of investments targeted at the implementation of renewables. The proposed scenarios indicate that the current energy model has the potential to radical change and to tackle climate change and energy issues while producing substantial economic savings and better life conditions for the population in the next years.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3