Research on efficient feature extraction: Improving YOLOv5 backbone for facial expression detection in live streaming scenes

Author:

Li Zongwei,Song Jia,Qiao Kai,Li Chenghai,Zhang Yanhui,Li Zhenyu

Abstract

Facial expressions, whether simple or complex, convey pheromones that can affect others. Plentiful sensory input delivered by marketing anchors' facial expressions to audiences can stimulate consumers' identification and influence decision-making, especially in live streaming media marketing. This paper proposes an efficient feature extraction network based on the YOLOv5 model for detecting anchors' facial expressions. First, a two-step cascade classifier and recycler is established to filter invalid video frames to generate a facial expression dataset of anchors. Second, GhostNet and coordinate attention are fused in YOLOv5 to eliminate latency and improve accuracy. YOLOv5 modified with the proposed efficient feature extraction structure outperforms the original YOLOv5 on our self-built dataset in both speed and accuracy.

Funder

National Natural Science Foundation of China

National Social Science Fund of China

Publisher

Frontiers Media SA

Subject

Cellular and Molecular Neuroscience,Neuroscience (miscellaneous)

Reference35 articles.

1. Benchmark analysis of representative deep neural network architectures;Bianco;IEEE Access,2018

2. YOLOv4: optimal speed and accuracy of object detection BochkovskiyA. WangC.-Y. LiaoH-Y. M. 34300543arXiv [Preprint]2020

3. Rosetta: Large scale system for text detection and recognition in images;Borisyuk,2018

4. Parasocial interaction with YouTubers: does sensory appeal in the YouTubers' video influences purchase intention?;Chen,2021

5. Deep learning approaches for facial emotion recognition: a case study on FER-2013;Giannopoulos,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3