Fecal and serum metabolomic signatures and gut microbiota characteristics of allergic rhinitis mice model

Author:

Chen Zhen,He Shancai,Wei Yihan,Liu Yang,Xu Qingqing,Lin Xing,Chen Chenyu,Lin Wei,Wang Yingge,Li Li,Xu Yuanteng

Abstract

BackgroundThe etiology of allergic rhinitis (AR) is complicated. Traditional therapy of AR still has challenges, such as low long-term treatment compliance, unsatisfactory therapeutic outcomes, and a high financial burden. It is urgent to investigate the pathophysiology of allergic rhinitis from different perspectives and explore brand-new possible preventative or treatment initiatives.ObjectiveThe aim is to apply a multi-group technique and correlation analysis to explore more about the pathogenesis of AR from the perspectives of gut microbiota, fecal metabolites, and serum metabolism.MethodsThirty BALB/c mice were randomly divided into the AR and Con(control) groups. A standardized Ovalbumin (OVA)-induced AR mouse model was established by intraperitoneal OVA injection followed by nasal excitation. We detected the serum IL-4, IL-5, and IgE by enzyme-linked immunosorbent assay (ELISA), evaluated the histological characteristics of the nasal tissues by the hematoxylin and eosin (H&E) staining, and observed the nasal symptoms (rubs and sneezes) to evaluate the reliability of the AR mouse model. The colonic NF-κB protein was detected by Western Blot, and the colonic histological characteristics were observed by the H&E staining to evaluate inflammation of colon tissue. We analyzed the V3 and V4 regions of the 16S ribosomal DNA (rDNA) gene from the feces (colon contents) through 16S rDNA sequencing technology. Untargeted metabolomics was used to examine fecal and serum samples to find differential metabolites. Finally, through comparison and correlation analysis of differential gut microbiota, fecal metabolites, and serum metabolites, we further explore the overall impact of AR on gut microbiota, fecal metabolites, and host serum metabolism and its correlation.ResultsIn the AR group, the IL-4, IL-5, IgE, eosinophil infiltration, and the times of rubs and sneezes were significantly higher than those in the Con group, indicating the successful establishment of the AR model. No differences in diversity were detected between the AR and Con groups. However, there were modifications in the microbiota’s structure. At the phylum level, the proportion of Firmicutes and Proteobacteria in the AR group increased significantly, while the proportion of Bacteroides decreased significantly, and the ratio of Firmicutes/Bacteroides was higher. The key differential genera, such as Ruminococcus, were increased significantly in the AR group, while the other key differential genera, such as Lactobacillus, Bacteroides, and Prevotella, were significantly decreased in the Con group. Untargeted metabolomics analysis identified 28 upregulated and 4 downregulated differential metabolites in feces and 11 upregulated and 16 downregulated differential metabolites in serum under AR conditions. Interestingly, one of the significant difference metabolites, α-Linoleic acid (ALA), decreased consistently in feces and serum of AR. KEGG functional enrichment analysis and correlation analysis showed a close relationship between differential serum metabolites and fecal metabolites, and changes in fecal and serum metabolic patterns are associated with altered gut microbiota in AR. The NF-κB protein and inflammatory infiltration of the colon increased considerably in the AR group.ConclusionOur study reveals that AR alters fecal and serum metabolomic signatures and gut microbiota characteristics, and there is a striking correlation between the three. The correlation analysis of the microbiome and metabolome provides a deeper understanding of AR’s pathogenesis, which may provide a theoretical basis for AR’s potential prevention and treatment strategies.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Fujian Province

Publisher

Frontiers Media SA

Subject

Infectious Diseases,Microbiology (medical),Immunology,Microbiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3