Pseudomonas aeruginosa Is More Tolerant Under Biofilm Than Under Planktonic Growth Conditions: A Multi-Isolate Survey

Author:

Thöming Janne G.,Häussler Susanne

Abstract

Biofilm-associated bacteria exhibit profound changes in bacterial physiology. They thrive in the environment but also in the human host in protected sessile communities. Antimicrobial therapy usually fails, despite the absence of genotypic resistance, and it is commonly accepted that biofilm-grown bacteria are up to 1,000-fold more resistant than planktonic cells. We are only at the beginning to understand the reasons for biofilm recalcitrance, and systematic approaches to describe biofilm-induced tolerance phenotypes are lacking. In this study, we investigated a large and highly diverse collection of 352 clinical Pseudomonas aeruginosa isolates for their antimicrobial susceptibility profiles under biofilm growth conditions towards the antibiotics ciprofloxacin, tobramycin, and colistin. We discovered characteristic patterns of drug-specific killing activity and detected conditional tolerance levels far lower (in the range of the minimal inhibitory concentration (MIC)), but also far higher (up to 16,000-fold increase compared to planktonic cells) than generally believed. This extremely broad distribution of biofilm-induced tolerance phenotypes across the clinical isolates was greatly influenced by the choice of the antibiotic. We furthermore describe cross-tolerance against ciprofloxacin and tobramycin, but not colistin, and observed an additive activity between biofilm-induced tolerance and genetically determined resistance. This became less evident when the biofilm-grown cells were exposed to very high antibiotic concentrations. Although much more remains to be learned on the molecular mechanisms underlying biofilm-induced tolerance, our data on intra-species variations in tolerance profiles provide valuable new insights. Furthermore, our observation that colistin appears to act independently of the tolerance mechanisms of individual clinical strains could make colistin a valuable therapeutic option in chronic biofilm-associated infections characterized by the presence of particularly tolerant strains.

Funder

Deutsche Forschungsgemeinschaft

European Research Council

Novo Nordisk Fonden

Publisher

Frontiers Media SA

Subject

Infectious Diseases,Microbiology (medical),Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3