Evaluation of phage-based decontamination in respiratory intensive care unit environments using ddPCR and 16S rRNA targeted sequencing techniques

Author:

Shi Yinghan,Zhang Weihua,Li Lina,Wu Wencai,Li Mengzhe,Xiao Kun,Wang Kaifei,Sheng Zhaojun,Xie Fei,Wang Xiuli,Shi Xin,Tong Yigang,Xie Lixin

Abstract

BackgroundKlebsiella pneumoniae is a major cause of hospital-acquired infections (HAIs), primarily spread through environmental contamination in hospitals. The effectiveness of current chemical disinfectants is waning due to emerging resistance, which poses environmental hazards and fosters new resistance in pathogens. Developing environmentally friendly and effective disinfectants against multidrug-resistant organisms is increasingly important.MethodsThis study developed a bacteriophage cocktail targeting two common carbapenem-resistant Klebsiella pneumoniae (CRKP) strains, ST11 KL47 and ST11 KL64. The cocktail was used as an adjunctive disinfectant in a hospital’s respiratory intensive care unit (RICU) via ultrasonic nebulization. Digital PCR was used to quantify CRKP levels post-intervention. The microbial community composition was analyzed via 16S rRNA sequencing to assess the intervention’s impact on overall diversity.ResultsThe phage cocktail significantly reduced CRKP levels within the first 24 hours post-treatment. While a slight increase in pathogen levels was observed after 24 hours, they remained significantly lower than those treated with conventional disinfectants. 16S rRNA sequencing showed a decrease in the target pathogens’ relative abundance, while overall species diversity remained stable, confirming that phages selectively target CRKP without disrupting ecological balance.DiscussionThe findings highlight the efficacy and safety of phage-based biocleaners as a sustainable alternative to conventional disinfectants. Phages selectively reduce multidrug-resistant pathogens while preserving microbial diversity, making them a promising tool for infection control.

Funder

National Natural Science Foundation of China

Beijing Municipal Natural Science Foundation

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3