Antimicrobial Activity of a Repurposed Harmine-Derived Compound on Carbapenem-Resistant Acinetobacter baumannii Clinical Isolates

Author:

Breine Anke,Van Gysel Mégane,Elsocht Mathias,Whiteway Clémence,Philippe Chantal,Quinet Théo,Valcek Adam,Wouters Johan,Ballet Steven,Van der Henst Charles

Abstract

ObjectivesThe spread of antibiotic resistant bacteria is an important threat for human health. Acinetobacter baumannii bacteria impose such a major issue, as multidrug- to pandrug-resistant strains have been isolated, rendering some infections untreatable. In this context, carbapenem-resistant A. baumannii bacteria were ranked as top priority by both WHO and CDC. In addition, A. baumannii bacteria survive in harsh environments, being capable of resisting to disinfectants and to persist prolonged periods of desiccation. Due to the high degree of variability found in A. baumannii isolates, the search for new antibacterials is very challenging because of the requirement of drug target conservation amongst the different strains. Here, we screened a chemical library to identify compounds active against several reference strains and carbapenem-resistant A. baumannii bacteria.MethodsA repurposing drug screen was undertaken to identify A. baumannii growth inhibitors. One hit was further characterized by determining the IC50 and testing the activity on 43 modern clinical A. baumannii isolates, amongst which 40 are carbapenem-resistant.ResultsThe repurposing screen led to the identification of a harmine-derived compound, called HDC1, which proves to have bactericidal activity on the multidrug-resistant AB5075-VUB reference strain with an IC50 of 48.23 µM. In addition, HDC1 impairs growth of 43 clinical A. baumannii isolates.ConclusionsWe identified a compound with inhibitory activity on all tested strains, including carbapenem-resistant clinical A. baumannii isolates.

Funder

H2020 Marie Skłodowska-Curie Actions

Fonds Wetenschappelijk Onderzoek

Publisher

Frontiers Media SA

Subject

Infectious Diseases,Microbiology (medical),Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3