Cephalosporins-induced intestinal dysbiosis exacerbated pulmonary endothelial barrier disruption in streptococcus pneumoniae-infected mice

Author:

Wang Jia-Feng,Shi Chang-Yi,Ying Hua-Zhong

Abstract

Antibiotic abuse is growing more severe in clinic, and even short-term antibiotic treatment can cause long-term gut dysbiosis, which may promote the development and aggravation of diseases. Cephalosporins as the broad-spectrum antibiotics are widely used for prevention and treatment of community-acquired respiratory tract infection in children. However, their potential consequences in health and disease have not been fully elaborated. In this study, the effects of cefaclor, cefdinir and cefixime on intestinal microbiota and lung injury were investigated in Streptococcus pneumoniae (Spn)-infected mice. The results showed that the proportion of coccus and bacillus in intestinal microbiota were changed after oral administration with cefaclor, cefdinir and cefixime twice for 10 days, respectively. Compared with the Spn-infected group, the proportion of Bifidobacterium and Lactobacillus in intestine were significantly reduced, while Enterococcus and Candida was increased after cephalosporin treatment. Furthermore, 3 cephalosporins could obviously increase the number of total cells, neutrophils and lymphocytes in BALF as well as the serum levels of endotoxin, IL-2, IL-1β, IL-6 and TNF-α. Mechanically, cephalosporins accelerated Spn-induced pulmonary barrier dysfunction via mediating the mRNA expressions of endothelial barrier-related proteins (Claudin 5, Occludin, and ZO-1) and inflammation-related proteins (TLR4, p38 and NF-κB). However, all of those consequences could be partly reversed by Bifidobacterium bifidum treatment, which was closely related to the elevated acetate production, indicating the protective effects of probiotic against antibiotic-induced intestinal dysbiosis. Therefore, the present study demonstrated that oral administration with cephalosporins not only disrupted intestinal microecological homeostasis, but also increased the risk of Spn infection, resulting in severer respiratory inflammation and higher bacterial loads in mice.

Funder

National Natural Science Foundation of China

Medical Science and Technology Project of Zhejiang Province

Publisher

Frontiers Media SA

Subject

Infectious Diseases,Microbiology (medical),Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3