Hardware-Software Co-Design of an In-Memory Transformer Network Accelerator

Author:

Laguna Ann Franchesca,Sharifi Mohammed Mehdi,Kazemi Arman,Yin Xunzhao,Niemier Michael,Hu X. Sharon

Abstract

Transformer networks have outperformed recurrent and convolutional neural networks in terms of accuracy in various sequential tasks. However, memory and compute bottlenecks prevent transformer networks from scaling to long sequences due to their high execution time and energy consumption. Different neural attention mechanisms have been proposed to lower computational load but still suffer from the memory bandwidth bottleneck. In-memory processing can help alleviate memory bottlenecks by reducing the transfer overhead between the memory and compute units, thus allowing transformer networks to scale to longer sequences. We propose an in-memory transformer network accelerator (iMTransformer) that uses a combination of crossbars and content-addressable memories to accelerate transformer networks. We accelerate transformer networks by (1) computing in-memory, thus minimizing the memory transfer overhead, (2) caching reusable parameters to reduce the number of operations, and (3) exploiting the available parallelism in the attention mechanism computation. To reduce energy consumption, the following techniques are introduced: (1) a configurable attention selector is used to choose different sparse attention patterns, (2) a content-addressable memory aided locality sensitive hashing helps to filter the number of sequence elements by their importance, and (3) FeFET-based crossbars are used to store projection weights while CMOS-based crossbars are used as an attentional cache to store attention scores for later reuse. Using a CMOS-FeFET hybrid iMTransformer introduced a significant energy improvement compared to the CMOS-only iMTransformer. The CMOS-FeFET hybrid iMTransformer achieved an 8.96× delay improvement and 12.57× energy improvement for the Vanilla transformers compared to the GPU baseline at a sequence length of 512. Implementing BERT using CMOS-FeFET hybrid iMTransformer achieves 13.71× delay improvement and 8.95× delay improvement compared to the GPU baseline at sequence length of 512. The hybrid iMTransformer also achieves a throughput of 2.23 K samples/sec and 124.8 samples/s/W using the MLPerf benchmark using BERT-large and SQuAD 1.1 dataset, an 11× speedup and 7.92× energy improvement compared to the GPU baseline.

Publisher

Frontiers Media SA

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. AccelTran: A Sparsity-Aware Accelerator for Dynamic Inference With Transformers;IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems;2023-11

2. Invited Paper: Algorithm/Hardware Co-Design for Few-Shot Learning at the Edge;2023 IEEE/ACM International Conference on Computer Aided Design (ICCAD);2023-10-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3