A Streamlined Study on Chitosan-Zinc Oxide Nanomicelle Properties to Mitigate a Drug-Resistant Biofilm Protection Mechanism

Author:

Limayem Alya,Patil Shrushti B.,Mehta Mausam,Cheng Feng,Nguyen Minh

Abstract

The nosocomial multidrug resistant bacteria (MDR), are rapidly circulating from water surfaces to humans away from the clinical setting, forming a cyclical breeding ground of resistance, causing worldwide infections, and thus requiring urgent responses. The combination of chitosan and zinc oxide (CZNPs), with proven bactericidal effects on some MDRs, was further studied to set the stage for a broad-spectrum in vivo utilization of CZNPs. Toward ensuring CZNPs' uniformity and potency, when it faces not only biofilms but also their extracellular polymeric substances (EPS) defense mechanism, the size, zeta potential, and polydispersity index (PDI) were determined through dynamic light scattering (DLS). Furthermore, the efficacy of CZNPs was tested on the inhibition of MDR Gram-negative Escherichia coli BAA-2471 and Gram-positive Enterococcus faecium 1449 models, co-cultured in an Alvatex 3D fiber platform as a biofilm-like structure. The Biotek Synergy Neo2 fluorescent microplate reader was used to detect biofilm shrinkage. The biofilm protection mechanism was elucidated through detection of EPS using 3D confocal and transmission electronic microscopy. Results indicated that 200 μl/mL of CZNPs, made with 50 nm ZnO and 10,000 Da chitosan (N = 369.1 nm; PDI = 0.371; zeta potential = 22.8 mV), was the most promising nanocomposite for MDR biofilm reduction, when compared to CZNPs enclosing ZnO, 18 or 100 nm. This study depicts that CZNPs possess enough potency and versatility to face biofilms' defense mechanism in vivo.

Publisher

Frontiers Media SA

Reference48 articles.

1. Preparation and characterization of chitosan/zinc oxide nanoparticles for imparting antimicrobial and UV protection to cotton fabric;AbdElhady;Int. J. Carbohydr. Chem,2012

2. Chemically-produced copper, zinc nanoparticles and chitosan–bimetallic nanocomposites and their antifungal activity against three phytopathogenic fungi;Al-Dhabaan;Int. J. Agr. Tech,2017

3. Chitosan-zinc oxide nanoparticle composite coating for active food packaging applications;Al-Naamani;Innov. Food Sci. Emerg. Technol,2016

4. Chitosan-zinc oxide nanocomposite coatings for the prevention of marine biofouling;Al-Naamani;Chemosphere,2017

5. Advances in nanomicelles for sustained drug delivery;Amirmahani;J. Ind. Eng. Chem.,2017

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3