Modeling COVID-19 incidence with Google Trends

Author:

Amusa Lateef Babatunde,Twinomurinzi Hossana,Okonkwo Chinedu Wilfred

Abstract

Infodemiologic methods could be used to enhance modeling infectious diseases. It is of interest to verify the utility of these methods using a Nigerian case study. We used Google Trends data to track COVID-19 incidences and assessed whether they could complement traditional data based solely on reported case numbers. Data on the Nigerian weekly COVID-19 cases spanning through March 1, 2020, to May 31, 2021, were matched with internet search data from Google Trends. The reported weekly incidence numbers and the GT data were split into training and testing sets. ARIMA models were fitted to describe reported weekly COVID cases using the training set. Several COVID-related search terms were theoretically and empirically assessed for initial screening. The utilized Google Trends (GT) variable was added to the ARIMA model as a regressor. Model forecasts, both with and without GTD, were compared with weekly cases in the test set over 13 weeks. Forecast accuracies were compared visually and using RMSE (root mean square error) and MAE (mean average error). Statistical significance of the difference in predictions was determined with the two-sided Diebold-Mariano test. Preliminary results of contemporaneous correlations between COVID-related search terms and weekly COVID cases reveal “loss of smell,” “loss of taste,” “fever” (in order of magnitude) as significantly associated with the official cases. Predictions of the ARIMA model using solely reported case numbers resulted in an RMSE (root mean squared error) of 411.4 and mean absolute error (MAE) of 354.9. The GT expanded model achieved better forecasting accuracy (RMSE: 388.7 and MAE = 340.1). Corrected Akaike Information Criteria also favored the GT expanded model (869.4 vs. 872.2). The difference in predictive performances was significant when using a two-sided Diebold-Mariano test (DM = 6.75, p < 0.001) for the 13 weeks. Google trends data enhanced the predictive ability of a traditionally based model and should be considered a suitable method to enhance infectious disease modeling.

Publisher

Frontiers Media SA

Subject

General Medicine

Reference41 articles.

1. Use of time-series analysis in infectious disease surveillance;Allard;Bull. World Health Organ.,1998

2. Predicting COVID-19 incidence through analysis of google trends data in iran: data mining and deep learning pilot study;Ayyoubzadeh;JMIR Public Health Surveill.,2020

3. Google trends: a web-based tool for real-time surveillance of disease outbreaks;Carneiro;Clin. Infect. Dis.,2009

4. Loss of smell and taste: a new marker of COVID-19? Tracking reduced sense of smell during the coronavirus pandemic using search trends;Cherry;Expert Rev. Anti. Infect. Ther.,2020

5. Comparing predictive accuracy;Diebold;J. Bus. Econ. Stat.,2002

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3