Nematicidal effect of Beauveria species and the mycotoxin beauvericin against pinewood nematode Bursaphelenchus xylophilus

Author:

Sánchez-Gómez Tamara,Harte Steven J.,Zamora Paula,Bareyre Matéo,Díez Julio Javier,Herrero Baudilio,Niño-Sánchez Jonathan,Martín-García Jorge

Abstract

Introduction and main objectiveBursaphelenchus xylophilus, commonly known as pine wood nematode (PWN), is considered one of the greatest threats to European and Asian pines. Regarding its management, most efforts have been directed toward control measures for the major vector (Monochamus spp.) and screening for genetic resistance in its hosts. However, an integrated pest management strategy which also implements pinewood nematode control is currently lacking. The aim of this study was to evaluate the nematicidal effect of two Beauveria species, a genus well known for its entomopathogenic activity.Summary methodologyFor this purpose, in vitro antagonism tests of fungi (Beauveria bassiana and B. pseudobassiana) and the mycotoxin beauvericin (C45H57N3O9) on B. xylophilus populations were conducted. Finally, the production of beauvericin in B. bassiana and B. pseudobassiana strains was quantified by high-performance liquid chromatography - mass spectrometry (HPLC-MS).Results and discussionBoth the B. bassiana and B. pseudobassiana fungal species and the mycotoxin beauvericin showed a clear nematicidal effect on B. xylophilus populations, substantially reducing their survival rate and even attaining 100% mortality in one case. HPLC-MS analysis confirmed and quantified the production of beauvericin by B. bassiana and demonstrated for the first-time beauvericin production in B. pseudobassiana.Final conclusionThese findings highlight the potential of Beauveria species and the mycotoxin beauvericin to be implemented in an integrated pest management strategy to control both nematode and vector.

Funder

Fundación BBVA

HORIZON EUROPE Marie Sklodowska-Curie Actions

Ministerio de Ciencia, Innovación y Universidades

Publisher

Frontiers Media SA

Subject

Nature and Landscape Conservation,Environmental Science (miscellaneous),Ecology,Global and Planetary Change,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3