Clouds and plant ecophysiology: missing links for understanding climate change impacts

Author:

Hughes Nicole M.,Sanchez Adriana,Berry Z. Carter,Smith William K.

Abstract

Observations and models indicate that human activity is altering cloud patterns on a global scale. Clouds impact incident visible and infrared radiation during both day and night, driving daily and seasonal variability in plant temperatures—a fundamental driver of all physiological processes. To understand the impacts of changing cloud patterns on essential plant-based processes such as carbon sequestration and food production, changes in local cloud regimes must be linked, via ecophysiology, with affected plant systems. This review provides a comprehensive treatment of cloud effects (apart from precipitation) on fundamental ecophysiological processes that serve as the basis of plant growth and reproduction. The radiative effects of major cloud types (cumulus, stratus, cirrus) are differentiated, as well as their relative impacts on plant microclimate and physiology. Cloud regimes of major climate zones (tropical, subtropical, temperate, polar) are superimposed over recent changes in cloud cover and primary productivity. The most robust trends in changing global cloud patterns include: (i) the tropical rain belt (comprised mostly of deep convective clouds) is narrowing, shifting latitudinally, and strengthening, corresponding with shorter but more intense rainy seasons, increased clouds and precipitation in some parts of the tropics, and decreases in others; (ii) tropical cyclones are increasing in intensity and migrating poleward; (iii) subtropical dry zones are expanding, resulting in fewer clouds and drier conditions at these latitudes; (iv) summer mid-latitude storm tracks are weakening and migrating poleward, and clouds in temperate regions are decreasing; and (v) clouds over the Arctic are increasing. A reduction in coastal fog and low clouds (including those associated with montane cloud forests) have also been observed, although these trends can be partially attributed to local patterns of deforestation, urbanization, and/or reductions in aerosols associated with clean air initiatives. We conclude by highlighting gaps in the cloud-ecophysiology literature in order to encourage future research in this under-studied area.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3