Spatial-temporal evolution and driving factors of water yield in three major drainage basins of Hainan Island based on land use change

Author:

Lei Jinrui,Zhang Le,Wu Tingtian,Chen Xiaohua,Li Yuanling,Chen Zongzhu

Abstract

Tropical rainforests in the central hilly section of Hainan Island are the source of the Nandu, Changhua, and Wanquan rivers, which are crucial for water conservation and ecological protection. The quantitative assessment of water yield in the three basins is beneficial for developing regional water resource protection plans, establishing ecological compensation mechanisms, and maintaining ecological balance. Based on land use data from five periods between 1980 and 2020, this paper adopts the InVEST model and geographic detectors to investigate the spatial-temporal variation characteristics and driving factors of water yield in three major basins of Hainan Island. The results demonstrate that forestland, which makes up more than 70% of the total area in the three basins of Hainan Island, is the predominant land use type. With a depth of 1269.18 mm, Wanquan Basin is the deepest of the three basins, followed by Nandu Basin and Changhua Basin. The total water yield of three basins shows a slightly decreasing trend from 17.991 billion m3 in 1980 to 17.864 billion m3 in 2020. The spatial distribution of water yield is high in the southeast region and low in the northwest region, with strong autocorrelation and significant aggregation. According to geographic detection, land use type is the dominant factor for the spatial differentiation of water yield in the three basins, with a contribution rate of 0.563, and soil type and annual precipitation are important impact factors. The interaction and synergy of soil types and land use types jointly affect the spatial differentiation of water yield in the basin. The results of this study can provide data support and scientific references for biodiversity conservation and ecosystem restoration in the three major basins of Hainan Island.

Funder

Hainan Provincial Department of Science and Technology

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Nature and Landscape Conservation,Environmental Science (miscellaneous),Ecology,Global and Planetary Change,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3