Diel and annual rhythms of tropical stem size changes in the Mayombe forest, Congo Basin

Author:

Luse Belanganayi Basile,Ilondea Bhely Angoboy,Phaka Christophe Mbungu,Laurent Félix,Djiofack Brice Y.,Kafuti Chadrack,Peters Richard L.,Bourland Nils,Beeckman Hans,De Mil Tom

Abstract

IntroductionThe Congo Basin forests, a crucial global carbon sink, are expected to face increased challenges of climate change by 2027, with an expected temperature rise of 1.5°C above pre-industrial levels, accompanied by increased humidity conditions. However, studies that try to understand their functioning and untangle the species-specific responses about how weather conditions impact secondary growth dynamics are still rare.MethodsHere we present the results of a study on diel and annual stem growth in 17 trees, belonging to 11 most abundant species, both canopy and understory, in the Mayombe forest (Congo Basin) in the Democratic Republic of the Congo (DRC). We measured highly-resolved radial stem size variations and weather conditions, to comprehend the ongoing patterns of secondary growth and examine the potential influence of projected weather conditions on them.ResultsWe found that at the diel scale, trees probably grow mainly from 6pm to 9am, and that at the annual scale, they grow mainly during the rainy season, from October to May. Some trees grow year-round, while others stop growing for a period ranging from 1 to 4 months. This growth cessation typically occurs during the dry season from June to September. A generalized linear mixed-effect model revealed that annual radial stem growth is positively related to rainfall.DiscussionOur results suggest that trees in the study site have a significant potential to cope with the projected 1.5°C increase in global temperature and an additional 50 mm of local rainfall. Trees of the species T. superba exhibited improved growth under the projected scenarios. For the other tree species, no significant difference in growth was observed between the predicted and observed scenarios. We believe that much remains to be done to better understand the tree growth-climate interaction of the large variety of tree species in the Congo Basin.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3