Extraction of farmland shelterbelts from remote sensing imagery based on a belt-oriented method

Author:

Deng Rongxin,Guo Qunzuo,Jia Menghao,Wu Yuzong,Zhou Qiwen,Xu Zhengran

Abstract

IntroductionFarmland shelterbelts play a positive role in ensuring food security and ecological safety. The absence or degradation of shelterbelt structures can lead to fragmentation of the remotely extracted results. Conversely, shelterbelt maintenance and management system considers these shelterbelts as entire units, even if they are divided into several parts by the gaps in them. It is essential to propose a remote extraction method to fill in fragmented results and accurately represent the distribution of farmland shelterbelts.MethodsIn this study, random forest algorithm was employed to classify land cover from ZY-3 (ZiYuan-3 satellite from China) imagery. Then, a thinning algorithm of mathematical morphology was applied to extract farmland shelterbelts, and the straight-line connection algorithm was used to connect central lines belonging to the same belt. Finally, the result was validated using nine uniformly distributed training sample areas across the entire region.Results and discussionThis method achieved a correct identification rate of 94.9% within the training areas. Among the different regions, the highest identification accuracy recorded was 98.4% and the lowest was 87.7%. In conjunction with cropland information and the shape index of forest patches, it was possible to remove information for non-farmland shelterbelts without introducing external information. This approach achieved a more refined extraction of forestland information. The combination of the thinning algorithm and straight-line connection algorithm addressed the issue of fragmented results in farmland shelterbelt extraction, compensating for the limitations of relying solely on mathematical morphology for belt connectivity. The research method can provide technical support for the monitoring and management of farmland shelterbelts.

Publisher

Frontiers Media SA

Subject

Nature and Landscape Conservation,Environmental Science (miscellaneous),Ecology,Global and Planetary Change,Forestry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3