Innovative regression model-based decision support tool for optimizing radiotherapy techniques in thoracic esophageal cancer

Author:

Li Yuxing,Ke Yue,Huang Xinran,Zhang Ruijuan,Su Wanghui,Ma Hongbing,He Pu,Cui Xinyue,Huang Shan

Abstract

BackgroundModern radiotherapy exemplified by intensity-modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT), has transformed esophageal cancer treatment. Facing challenges in treating thoracic esophageal cancer near vital organs, this study introduces a regression model-based decision support tool for the optimal selection of radiotherapy techniques.MethodsWe enrolled 106 patients diagnosed with locally advanced thoracic esophageal cancer in this study and designed individualized IMRT and VMAT radiotherapy plans for each patient. Detailed dosimetric analysis was performed to evaluate the differences in dose distribution between the two radiotherapy techniques across various thoracic regions. Single-factor and multifactorial logistic regression analyses were employed to establish predictive models (P1 and P2) and factors such as TLV/PTV ratio. These models were used to predict the compliance and potential advantages of IMRT and VMAT plans. External validation was performed in a validation group of 30 patients.ResultsUsing predictive models, we developed a data-driven decision support tool. For upper thoracic cases, VMAT plans were recommended; for middle/lower thoracic cases, the tool guided VMAT/IMRT choices based on TLV/PTV ratio. Models P1 and P2 assessed IMRT and VMAT compliance. In validation, the tool showed high specificity (90.91%) and sensitivity (78.95%), differentiating IMRT and VMAT plans. Balanced performance in compliance assessment demonstrated tool reliability.ConclusionIn summary, our regression model-based decision support tool provides practical guidance for selecting optimal radiotherapy techniques for thoracic esophageal cancer patients. Despite a limited sample size, the tool demonstrates potential clinical benefits, alleviating manual planning burdens and ensuring precise, individualized treatment decisions for patients.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3