The Diagnostic Performance of Machine Learning-Based Radiomics of DCE-MRI in Predicting Axillary Lymph Node Metastasis in Breast Cancer: A Meta-Analysis

Author:

Zhang Jing,Li Longchao,Zhe Xia,Tang Min,Zhang Xiaoling,Lei Xiaoyan,Zhang Li

Abstract

ObjectiveThe aim of this study was to perform a meta‐analysis to evaluate the diagnostic performance of machine learning(ML)-based radiomics of dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) DCE-MRI in predicting axillary lymph node metastasis (ALNM) and sentinel lymph node metastasis(SLNM) in breast cancer.MethodsEnglish and Chinese databases were searched for original studies. The Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) and Radiomics Quality Score (RQS) were used to assess the methodological quality of the included studies. The pooled sensitivity, specificity, diagnostic odds ratio (DOR), and area under the curve (AUC) were used to summarize the diagnostic accuracy. Spearman’s correlation coefficient and subgroup analysis were performed to investigate the cause of the heterogeneity.ResultsThirteen studies (1618 participants) were included in this meta-analysis. The pooled sensitivity, specificity, DOR, and AUC with 95% confidence intervals were 0.82 (0.75, 0.87), 0.83 (0.74, 0.89), 21.56 (10.60, 43.85), and 0.89 (0.86, 0.91), respectively. The meta-analysis showed significant heterogeneity among the included studies. There was no threshold effect in the test. The result of subgroup analysis showed that ML, 3.0 T, area of interest comprising the ALN, being manually drawn, and including ALNs and combined sentinel lymph node (SLN)s and ALNs groups could slightly improve diagnostic performance compared to deep learning, 1.5 T, area of interest comprising the breast tumor, semiautomatic scanning, and the SLN, respectively.ConclusionsML-based radiomics of DCE-MRI has the potential to predict ALNM and SLNM accurately. The heterogeneity of the ALNM and SLNM diagnoses included between the studies is a major limitation.

Publisher

Frontiers Media SA

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3