Biomarkers for risk-based treatment modifications for CNS germ cell tumors: Updates on biological underpinnings, clinical trials, and future directions

Author:

Takami Hirokazu,Ichimura Koichi

Abstract

CNS germ cell tumors (GCTs) preferentially occur in pediatric and adolescent patients. GCTs are located predominantly in the neurohypophysis and the pineal gland. Histopathologically, GCTs are broadly classified into germinomas and non-germinomatous GCTs (NGGCTs). In general, germinoma responds well to chemotherapy and radiation therapy, with a 10-year overall survival (OS) rate of approximately 90%. In contrast, NGGCTs have a less favorable prognosis, with a five-year OS of approximately 70%. Germinomas are typically treated with platinum-based chemotherapy and whole-ventricular radiation therapy, while mature teratomas can be surgically cured. Other NGGCTs require intensive chemotherapy with radiation therapy, including whole brain or craniospinal irradiation, depending on the dissemination status and protocols. Long-term treatment-related sequelae, including secondary neoplasms and cerebrovascular events, have been well recognized. These late effects have a tremendous impact in later life, especially since patients are mostly affected in childhood or young adults. Intending to minimize the treatment burden on patients, the identification of biomarkers for treatment stratification and evaluation of treatment response is of critical importance. Recently, tumor cell content in germinomas has been shown to be closely related to prognosis, suggesting that cases with low tumor cell content may be safely treated with a less intensive regimen. Among the copy number alterations, the 12p gain is the most prominent and has been shown to be a negative prognostic factor in NGGCTs. MicroRNA clusters (mir-371-373) were also revealed to be a hallmark of GCTs, demonstrating the potential for the application of liquid biopsy in the diagnosis and detection of recurrence. Recurrent mutations have been detected in the MAPK or PI3K pathways, most typically in KIT and MTOR and low genome-wide methylation has been demonstrated in germinoma; this most likely reflects the cell-of-origin primordial germ cells for this tumor type. These alterations can also be leveraged for liquid biopsies of cell-free DNA and may potentially be targeted for treatment in the future. Advancements in basic research will be translated into clinical practice and can directly impact patient management. Additional understanding of the biology and pathogenesis of GCTs will lead to the development of better-stratified clinical trials, ultimately resulting in improved treatment outcomes and a reduction in long-term treatment-related adverse effects.

Publisher

Frontiers Media SA

Subject

Cancer Research,Oncology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3