The effects of grazing and the meteorologic factors on wind-sand flux in the desert steppe

Author:

Meng Biao,Gao Cuiping,Lv Shijie,Han Guodong,Li Zhiguo,Li Junran,Wu Qian,Zhang Feng

Abstract

Introduction: Affected by global climate warming and changing rainfall patterns, the degree of soil desiccation in arid grasslands has increased and soil wind erosion has become a major environmental concern. Understanding and controlling the characteristics of sand flux and wind erosion caused by the degradation of grassland vegetation, as well as their changing patterns, has become a top priority in combating grassland degradation. Therefore, the aim of this study is to clarify the extent of wind erosion in desert grasslands and its influencing factors in order to provide a theoretical basis and data support for the restoration of grassland vegetation and the sustainable development of grassland livestock production.Methods: Use of SAS and Origin statistical software to perform multifactorial analysis of variance on variables such as year, stocking rate, meteorological conditions and wind-sand flux to determine the degree of influence of different factors on sand flux and the magnitude of interactions among different factors.Results and discussion: The results showed that wind-sand flux was higher when rainfall was low and stocking intensity was high. Specifically, the wind-sand flux increased by 50.3% and 83.6% in the moderate and high grazing treatments, respectively, compared to the control. The data obtained also showed that there was a significant interaction between climate and grazing intensity, suggesting that an increase in one factor may attenuate the differences in wind-sand flux at different levels of other factors. There is likely to be a threshold effect of stocking rate of moderate grazing on the variation of wind-sand flux influenced by different factors. In summary, the factors affecting wind-sand flux in the arid desert steppe are numerous and complex, with stocking rates below moderate grazing being key to reducing wind-sand flux.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3