Assessing spatial and temporal changes in diversity of copepod crustaceans: a key step for biodiversity conservation in groundwater-fed springs

Author:

Cerasoli Francesco,Fiasca Barbara,Di Lorenzo Tiziana,Lombardi Annalina,Tomassetti Barbara,Lorenzi Valeria,Vaccarelli Ilaria,Di Cicco Mattia,Petitta Marco,Galassi Diana M. P.

Abstract

Despite the close attention springs have received from a hydrologic perspective and as biodiversity hotspots, the multiple dimensions of spring meiofaunal assemblage diversity are still poorly investigated. Knowledge of beta diversity patterns and drivers can inform and improve management decisions on biodiversity conservation. Here, we analyzed beta diversity of copepod assemblages in karst springs in Central Italy by focusing on: 1) relative contributions of turnover and nestedness components to taxonomic and phylogenetic beta diversity; 2) temporal variation of species richness and beta diversity within and between the target springs in conjunction with models of the influence of physical-chemical parameters on within-spring diversity changes; 3) expected risk of habitat loss due to variation in groundwater recharge under climate change. To this end, we gathered data from 168 samples collected in four karst springs from 2004 to 2016. Overall, we found 48 copepod species, 22 of which are obligate groundwater dwellers while the remaining 26 usually occur in surface freshwaters. All springs showed significant changes in taxonomic and phylogenetic beta diversity over time. Total beta diversity was high for both the taxonomic and phylogenetic dimensions, and turnover was the main component. Inter-site variability in dissolved oxygen explained a noticeable part of temporal variation in beta diversity, likely reflecting the role of microhabitat heterogeneity in shaping site-specific assemblages. However, most of the temporal variation in species richness and beta diversity remained unexplained, suggesting a major role of other factors, such as seasonal discharge variations. Modelling of recharge rates for all the four springs over 2001–2020 suggested a potential >40% recharge deficit under dry conditions. Moreover, Cellular Automata-based modelling of rainfall over the Gran Sasso-Sirente hydrogeologic unit (feeding three of the four springs) predicted an overall precipitation decrease in the 2081–2095 period. Such changes could produce severe effects on springs’ microhabitats and related communities. Our results indicate that partitioning beta diversity, monitoring its temporal changes and assessing its environmental drivers are critical to evidence-based conservation of springs. Particularly, the high species turnover we have observed suggests that conservation strategies should seek to preserve as many microhabitats as possible within and among karst springs.

Publisher

Frontiers Media SA

Subject

General Environmental Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3