Organic Matter Processing on Dry Riverbeds is More Reactive to Water Diversion and Pollution Than on Wet Channels

Author:

Pérez-Calpe Ana Victoria,de Guzman Ioar,Larrañaga Aitor,von Schiller Daniel,Elosegi Arturo

Abstract

Rivers are severely affected by human activities and many are simultaneously impacted by multiple stressors. Water diversion for hydropower generation affects ecosystem functioning of the bypassed reaches, which can alternate between periods with natural discharge and others with reduced flow that increase the surface of dry riverbeds. In parallel, urban pollution contributes a complex mixture of nutrients, organic matter, heavy metals, pesticides, and drugs, thus becoming an important stressor in rivers. However, there is little information on the interaction between both stressors on ecosystem functioning and, particularly, on organic matter processing, a key process linked to the input of energy to food webs. To assess the impact of water diversion and urban pollution on organic matter processing, we selected four rivers in a pollution gradient with a similar diversion scheme and compared reaches upstream and downstream from the diversion weirs. We measured leaf-litter decomposition and carbon dioxide (CO2) fluxes in both the wet channel and the dry riverbed. Water diversion and pollution in the wet channel did not affect CO2 fluxes but reduced microbial decomposition, whereas in the dry riverbed, their interaction reduced total and microbial decomposition and CO2 fluxes. Thus, both stressors affected organic matter processing stronger in dry riverbeds than in the wet channel. These results show that dry riverbeds must be taken into account to assess and manage the impacts of human activities on river ecosystems.

Funder

Ministerio de Economía, Industria y Competitividad, Gobierno de España

European Social Fund

Eusko Jaurlaritza

Diputación Foral de Bizkaia

Publisher

Frontiers Media SA

Subject

General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3